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1DV516 - Assignment 2 

Exercise 1 - HashTable with quadratic probing 
This is to be used in Exercise 2. 
 
Given a prime-sized table, (n, n^2, n^3, …,) % tableSize will give (tableSize+1)/2 distinct 
values. As such, if the table is more than half full, there is no guarantee that we will find a 
free space. Therefore, the load factor is limited to max 0.5. 

Insertions 
The general idea behind inserting is: 
Calculate hashcode O(1) 
Check position in table O(1) 
If fail, calculate next position, O(1), and check again - times ? 
Rehash O(?) 
Insert in empty place O(1) 
 
Excluding rehashes, examining the case where each inserted element has the same 
hashcode we can see that the inserts will follow the pattern O(1), O(2), O(3), ... , O(N) where 
N is the number of elements to insert.The increasing time is because of already taken 
places, O(1) here is not one operation but “a few”. 
 
Thus, worst case is O(N) and best case O(1) excluding rehashes. 
 
When the load factor reaches 0.5, a rehash is done, and all elements are re-inserted in a 
fresh roughly twice as large table. 
 
X - Place found instantly 
XX - Skip first, then, place found 
XXX - …. 
… 
N*X 
 
The above text representation shows that the operations visualized as Xs will form a triangle 
of height N which has the area N^2/2. Amortized over N inserts this gives N/2 = O(N) 
operations per insert in addition to the O(N) we already have, which is still O(N). 
 
Therefore it still holds that worst case is O(N). 



Lookup 
Lookup is the identical to the first step of insert where we try to find an empty position in the 
table, with no risk of rehash. This is O(N). 

Exercise 2 
For getIntersections() simply used a hash table.  
 
Pseudocode: 
init intersections 
init position = origo 
For [STEP]: 

position += STEP 
if lookup(position): 

push position to intersections 
insert(position) 

 
return intersections 
 
The idea is to iterate through the array of steps, derive current position, and use the 
hashtable to see if the position has already been visited. Using the analysis done before 
(X-triangle) we can see that the same applies here, but with a lookup/insert pair. 
 
X (lookup) 
X (insert) 
XX ... 
XX ... 
XXX ... 
XXX ... 
... 
 
Since we have already shown that amortized rehashing does not make inserts >O(N), we 
can conclude that getIntersections() is (O(N) + O(N))*N_STEPS = O(N^2) worst case but in 
reality much faster. This can be improved upon but not below O(N). For example we could 
have a boolean insert() operation which inserts if not in table and returns status. 

Exercise 3 - MyMeasure 

isSameCollection 
For this exercise we have made a slight adjustment of ​MyHashTable​ called 
CollectionComparationTable​. The differences are that the isDeleted property is replaced with 
a count, allowing for more of the same element to be inserted. Each insertion of the same 



element increases the count by one, each deletion lowers it. A count of zero is equivalent to 
the element being deleted, and it’s never lowered below this point. 
 
The first thing our implementation does is to compare the length of the arrays. If they are not 
the same, the arrays must differ. 
 
If not, we insert all the elements of one of the arrays into the CollectionComparationTable, 
and then we remove all the elements of the second one. If the two arrays do indeed contain 
the same elements, the size of the CollectionComparationTable becomes zero. If there is a 
mismatch between the arrays, some elements of the first one will never be deleted, and the 
size is non-zero. 
 
Both insertion and deletion from the CollectionComparationTable is O(N) amortized. This 
means that ​isSameCollection​ has a time complexity of 2 + N*O(N) + N*O(N) + 1 = O(N^2). 
 

minDifference 
Here we begin with sorting the two arrays with merge sort, which we know is (if correctly 
implemented) O(N log N). Then the looping over both arrays simultaneously is an O(N) 
operation. Inside we have a one liner with cost O(1).  
All in all, 2*O(N log N) + O(N) = O(N log N), which is our worst case. 
 

Our merge sort 
First we make a copy of the incoming array - O(N). 
The recursive call ​split​ splits the array down the middle, until the length of each half is less 
than two. Such a halving operation is O(log N). 
Next, we call​ merge​ on the two halves, to sort the two halves into one sorted part double its 
size. We create a copy of both the halves, and sort them back into place. this is ½O(N) + 
½O(N) + O(N) = O(N). ​Merge ​is called O(log N) times, since it’s part of the recursive tree of 
split​. 
 
In total, this gives is O(N) + O(log N) + O(N log N) = O(N log N). 
 

getPercentileRange 
We spent​ a lot​​ of time trying to get a pivoting algorithm to work, which is why the report is 
somewhat rushed. 
 
The idea behind this algorithm we devised is as follows (we have included code that does 
not work but shows the idea). 
 
Given the input array of length N, transform the percentile range into an index range, eg 
10-90 <-> 1,8 for a 10-length array. Then, pick a pivot as in quicksort and partition. If the 



partition is below the low percentile or above the high percentile, adjust the “active range” 
(discard elements that we now know won’t be in the final set). Repeat this until: The pivot 
ends up between or on any of the “percentile indices” (1,8 in this example). 
 
Then, start working with the same idea on the “lower part” and “higher part” as is shown in 
the lecture slides where one wants to find the median. Instead of finding the median, we end 
up with two partitioned sub-arrays where the last pivots is on the low index and high index.. 
Then, one can simply pick the lower part of the higher subarray and the higher part of the 
lower subarray. 
 
Without actually fully sorting, this algorithm would have given a somewhat unsorted set with 
all element in the desired percentile range. 
 
This was also done in an in-place fashion, so while there is talk of sub-arrays, they are 
written back instantly to the input. See code (Pivoteer.java, PercentilePartition.java) for a 
deeper explanation. Both are different attempts, Pivoteer being the newest.  

Handed in getPercentileRange 
The solution we hand in instead uses the merge sort we already implemented to sort the 
array, and then printing the values from the concerned indices. A much more boring solution. 
 
Sorting the array with mergesort is O(N log N). We then find out the low and high index, a 
constant time operation. Finally we copy the range we care about into a new array (to be 
returned), which in case of the whole range being requested is O(N). 
 
So, in the end, this comes down to O(N log N) + O(1) + O(N) = O(N log N). 






